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Approach

Flow-through reactors (Rao et al, 2007) were employed to investigate

Rationale

Shelf seas are globally important in_

contributing to the  biogeochemical| Sopumm - T g the biogeochemical cycling of permeable sediments.
cycling of carbon and nutrients. Much of N # * Surface sediment (<5 cm) was collected from a permeable site.
the benthic environment found in shelf Zaees==_ . 1 ST PP@ ° Experimental conditions were set with flow rates of 1 ml min and

seas comprise of relic permeable sands . S at bottom temperature (8°C — 11°C).
whereby advective pore-water flow | & =8 =
processes govern the biogeochemical &~
cycling within these sediments.  To ¥ % 'sg
further our understanding of these Filaau=tis S8
processes we embarked on a field ESECHENEEINEE T
campaign as part of the UK led Shelf Sea |Figure 1 MODIS Chlorophyll ~OC5
. . weekly composite (27th April - 3rd May
Biogeochemistry  Programme; three 2014). NERC Earth Observation Data
. : : Acquisition and Analysis Service B
cruises took place in the southern Celtic SRR ——
Sea in 2015 and were timed to sample pre-bloom (March [DY021), post- | Figure 2 IHOW through reactor set up ' ﬁ B

bloom (May [DY030] and late summer (August [DY034]) conditions.

Results

Ja Inflow and outflow

S8 samples were collected
B (12-24 hours) for O,
B (Unisense sensors), iron
(1), inorganic nutrients
(M. Woodward, PML),
and DOC/DON.
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F— . Highly variable net fluxes during late
I N |t|a| COnCI USIONS... °Fe(ll)release during post-bloom as a result of oxic summer (-4.77 =5.11 umol m3 d-1).
| o breakdown of organic matter. Substantial initial releases of DON
* Appears DOC fuelling respiration pre-bloom ¢ Permeable sediments can act as a substantial and across all seasons, highest post-
» Seasonality observed in O, consumption consistent source of DSi and PO, to the pelagic system. | ploom (18 umol m3 d1), decreasing
can be attributed to an assumed increase in Permeable sediments are dynamic systems which play a | with some net removal during pre-
organic C loading to sediment substantial role in carbon and nutrient biogeochemistry | bloom.
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