Biogeochemistry, macronutrient and carbon cycling in the benthic layer (BMCC)

Department for Environment Food & Rural Affairs

Spatio-temporal patterns of fresh organic matter remineralization, benthic bacterial biomass and bacterial respiration

Helen Smith,

Dan Mayor, Karen Tait, Barry Thornton

Shelf Sea Biogeochemistry final science meeting, 5th–6th June 2017, University of Winchester

Benthic pelagic coupling across the Celtic Sea

Aim: "quantitatively describe the rates and stoichiometry of organic matter remineralization at the seafloor, the organisms responsible and how these change in space and time"

Methods

- Sub-core from NIOZ box core at each site
- Add ¹³C + ¹⁵N labelled diatoms (17 mmol C m⁻²)
- Incubate for 24 hrs in controlled temperature room in dark
- Cores continuously stirred
- O₂ monitored every hour via optode
- T0, T18, T24 O_2 , nutrients, DI¹³C, DI¹⁵N
- Sediments sliced and sampled for macrofauna and molecular + phospholipid fatty acid analyses

No effect of diatom addition (p > 0.1) - so the experiment does not affect the natural functioning of the system

Benthic community oxygen consumption rate varies in space and time

(time x site x cruise interaction, p = 0.004)

Rates ~ 1 - 14 mmol m² d⁻¹

Bacterial Biomass & Bulk Carbon

Bacterial biomass ranged between ~50-100 mmol C m⁻²

Strongly correlated with sediment carbon content (unsuprisingly)

Microbial community structure

Phylum-level microbial community structure varies in space and time

(site x cruise interaction, p < 0.001)

Faunal biomass

Faunal biomass ranged between ~1-10 mmol C m⁻² (an order of magnitude lower than bacteria)

Stable Isotope labelled DIC flux

Remineralisation of added diatom carbon varies in space and time

(site x cruise interaction, p < 0.001)

Stable Isotope labelled DIN flux

Remineralisation of added diatom nitrogen varies in space and time (site x cruise interaction, p < 0.001)

DIN release from remineralised diatoms

Stoichiometry of remineralization

CN of remineralisation products varies in space and time

(site x cruise interaction, p < 0.001)

Variable, but always low (< Redfield)!

Bacteria clearly dominate benthic biomass at all stations

Interactive effects are common – community composition and biogeochemical functioning of the seafloor both vary in space and time

Benthos can rapidly process the addition of labile carbon, regardless of space/time

Remineralization stoichiometry is always low (CN <7 by atoms) – suggests community is:

- non-N limited (possible C limitation?)
- a strong source of DIN to the overlying water column