

Implementing iron in the SSB-ERSEM model

James Clark (PML) Sonja van Leeuwen (CEFAS) Gennadi Lessin (PML) Luca Polimene (PML)

Why?

Shelf Seas Biogeochemistry – WP3 Understanding shelf Fe cycling and export

Modelling can help

Test hypothesis emerging from the fieldwork

Adding spatial and temporal resolution

Look at processes hard to measure in the field

Science questions

Is the shelf a source of iron to the open ocean?

How important is the sediment pool as a source compared to the recycling of organic material?

History of ERSEM/BFM

Creation of a marine ecosystem model that

- has multiple functional groups within each trophic level
- couples both the pelagic and benthic compartment
- is based on internally varying nutrient ratio's

European Regional Seas Ecosystem Model Biogeochemical Flux Model

J.W. Baretta, J.G. Baretta-Bekker (DHI, DK)
P. Ruardij (NIOZ, NL)
W. Ebenhöh, C. Kohlmeier (Oldenburg, D)
G. Radach, HJ. Lenhart (Hamburg U, D)
N. Pinardi, M. Zavatarelli (Bologna U, I)
M. Vichi (INGV, I)
M. Vichi (INGV, I) Ph. Radford , J. Blackford (PML, UK)
M. Vichi (INGV, I) Ph. Radford , J. Blackford (PML, UK) M. Heath, W.S.C. Gurney (Strathclyde U, UK)
M. Vichi (INGV, I) Ph. Radford , J. Blackford (PML, UK) M. Heath, W.S.C. Gurney (Strathclyde U, UK) J.G. Ollason (Aberdeen U, UK)
M. Vichi (INGV, I) Ph. Radford , J. Blackford (PML, UK) M. Heath, W.S.C. Gurney (Strathclyde U, UK) J.G. Ollason (Aberdeen U, UK) A. Cruzado, R. Varela (CSIC, E)

SSB meeting Liverpool 2014

Identification of weaknesses in the current SSB-ERSEM Fe implementation

- lack of speciation
- lack of photochemical processes (quota not tied to photo-acclimation)
- use of a constant scavenging rate
- lack of ligand representation

- internal Fe quota in need of improvements/updating
- lack of Fe in zooplankton/bacteria
- constant sedimentation flux
- scavenging rates not particle dependent
- uptake determined mainly by size

SSB workshop London 2016

Creation of conceptual Fe model for implementation in SSB-ERSEM

Determine which weaknesses are essential to the science questions the model could help answer and are feasible to implement

- seasonal changes

- distinction in sediment sources of Fe supply to the water column

Dynamic scavenging rate due to particle sinking

General assumptions

The adsorption of iron into particles is assumed to be regulated by the amount of DOC (assumed to be a proxy of organic ligands) relative to POC:

 φ_{eq} is a parameter representing the DOC to POC ratio above which iron is stabilised by ligands and δ (d⁻¹) represents the time scale of the process

SSB observations

Model set up available for **Benthic A** site 7°20'W 7°0'W 6°40'W **CANDYFLOSS** site requires calibration Site ID SmartBuoy Celtic Deep 2 Lander Nymph Bank Box Extents But what does the seasonal signal look like? East Haig Fras Iron [µmol/m³] Folk & Ward 0 Box I Classification Box H 1.8 M -20 1.6 sM mS 1.4 10°0'W 5°0'W S -401.2 depth [m] (g)sM (g)mS 1.0 -60(g)S 0.8 N.0.95 gM 0.6 gmS -80 0.4 gS mG 0.2 -10050°0'N msG 0.0 sG 2015 2014 G time

Comparison to CANDYFLOSS data

Data courtesy of Maeve Logan (Un. of Southampton)

Comparison to CANDYFLOSS data

time

Biological response to changing Fe

Work is ongoing ...

Still a lot to do:

- implementations (lithogenic pool, ligands, quota's dependent on photo-acclimation, sediment flux to pelagic, bacterial storage)

- set-ups
- validation, including benthic observations

