

Department for Environment Food & Rural Affairs

Enhanced iron supply from the continental slope by intermediate nepheloid layers

Angela Milne, Antony Birchill, Simon Ussher, Maeve Lohan, Amber Annett & Walter Geibert

Transect Locations

< 0.2 µm

dissolved Fe (dFe)

< 0.2 μm			
dissolved Fe (dFe)			
< 0.02 μm	0.02–0.2 μm		
soluble Fe (sFe)	colloidal Fe (cFe)		

< 0.2 μm		> 0.45 μm
dissolve	d Fe(dFe)	particulate Fe (pFe)
< 0.02 μm	0.02–0.2 μm	
soluble Fe (sFe)	colloidal Fe (cFe)	

< 0.2	< 0.2 μm dissolved Fe (dFe)		> 0.45 μm particulate Fe (pFe)	
dissolved				
< 0.02 μm	0.02–0.2 μm	Leach*	Digestion§	
soluble Fe (sFe)	colloidal Fe (cFe)	labile pFe (LpFe)	Total pFe (pFe)	

*Leach: 25% Acetic acid + reducing agent [§] Digest: HNO₃/HCI/HF

< 0.2	μm d Fe (dFe)	> 0. particula	45 μm ate Fe (pFe)
< 0.02 μm	0.02–0.2 μm	Leach*	Digestion§
soluble Fe (sFe)	colloidal Fe (cFe)	labile pFe (LpFe)	Total pFe (pFe)
	Unfilte	ered	
	dissolvable l	Fe (TdFe)	

Acidified (pH 1.8) for >3-6 months Analysed by FI-CL

Analysed by ICP-MS

*Leach: 25% Acetic acid + reducing agent § Digest: HNO₃/HCI/HF

Transect 1 - Canyon

- INLs evident in ratios of particulate elements (e.g. Mn/Al)
- Off-shelf transport

Impact on Fe – Transect 1 (Canyon)

Impact on Fe – Transect 1 (Canyon)

DY018 (Nov 2014) T2

 Increases in dFe correlate with peaks in beam attenuation

Particles (nM) 10 20 30 40 50 0 dFe (nM) 0.0 0.5 1.0 1.5 2.0 26.6 Potential density (kg m⁻³) 26.8 27.0 27.2 27.4 27.6 27.8 0.05 0.00 0.10 0.15 0.20 Beam Attenuation (m⁻¹)

DY018 (Nov 2014) T2

- Increases in dFe correlate with peaks in beam attenuation
- Similar increases are observed for particulate Fe

DY033 (July 2015) T1

 Even though dFe is raised, still evidence of additional input corresponding to INL at σ = 27.4

DY033 (July 2015) T1

- Even though dFe is raised, still evidence of additional input corresponding to INL at σ = 27.4
- Similar increases observed for particulate Fe fractions

- Strong relationship with particulate Fe (R² = 0.6368)
- Strong correlation between TdFe-pFe

• dFe

dFe

- Strong relationship with particulate Fe (R² = 0.6368)
- Strong correlation between TdFe-pFe
- Equally strong relationship with LpFe (R² = 0.6516)
- Strong correlation between TdFe-LpFe

- Strong relationship with particulate Fe (R² = 0.6368)
- Strong correlation between TdFe-pFe
- Equally strong relationship with LpFe (R² = 0.6516)
- Strong correlation between TdFe-LpFe
- Influences dFe capped

- Strong relationship with
 particulate Fe (R² = 0.6368)
- Strong correlation between TdFe-pFe
- Equally strong relationship with LpFe (R² = 0.6516)
- Strong correlation between TdFe-LpFe
- Influences dFe capped
- Look closer at particle dissolved interactions

Predominantly upper waters

dFe concentrations

Biologically controlled

LpFe concentrations

- Biological influence
- Vertical inputs of pFe

dFe concentrations

Biologically controlled

LpFe concentrations

- Biological influence
- Vertical inputs of pFe

1.2 -0.6187 ± 0.0497

Predominantly upper waters

Low LpFe/LpAl in surface waters – removal of LpFe?

Intermediate depths

LpFe concentrations

- Sinking biogenic particles
- Vertical & horizontal inputs of pFe

dFe concentrations

- Remineralisation
- Approaching ligand saturation
- Additional 'buffering' from pFe

Intermediate depths

LpFe concentrations

- Sinking biogenic particles
- Vertical & horizontal inputs of pFe

dFe concentrations

- Remineralisation
- Approaching ligand saturation
- Additional 'buffering' from pFe

cFe dominates at depth (>150 – 500 m) Very small particles!

Conclusions

- INLs source of dFe and particulate Fe
 - Winter mixing will re-supply surface waters with dFe from shallow INLs.
 - o dFe from deeper INLs will remain transported at these depths. Impact on deep water inventory of the North Atlantic will be dependent
 - on rapid transport
 - particle load and hence scavenging
- Need to consider all fractions of Fe (sFe, cFe, LpFe), not just dFe

Conclusions

- INLs source of dFe and particulate Fe
 - Winter mixing will re-supply surface waters with dFe from shallow INLs.
 - o dFe from deeper INLs will remain transported at these depths. Impact on deep water inventory of the North Atlantic will be dependent
 - on rapid transport evidence from Ra
 - particle load and hence scavenging
- Need to consider all fractions of Fe (sFe, cFe, LpFe), not just dFe

Iron cycling within the shelf system

²²⁴Raxs (dpm m⁻³) dFe (nM) 1.0 0.5 1.5 0 2 8 6 10 500 Depth (m) 1000 1300 Typical whe 1600 N.Atl dFe profile 1900 10 20 30 40 50 60 0.1 0.2 0.3 0.4 0 0 pFe (nM) Turbidity [m⁻¹ sr⁻¹] x 10³

Radium and Fe in nepheloid layers

²²⁴Raxs (dpm m⁻³) dFe (nM) 1.0 0.5 1.5 0 2 8 6 10 500 Depth (m) 1000 1300 Typical whe 1600 N.Atl dFe profile 1900 10 20 30 40 50 60 0.1 0.2 0.3 0.4 0 0 pFe (nM) Turbidity [m⁻¹ sr⁻¹] x 10³

Radium and Fe in nepheloid layers

²²⁴Raxs (dpm m⁻³) dFe (nM) 1.0 0.5 1.5 0 2 8 6 10 500 Depth (m) 1000 1300 Typical whe 1600 N.Atl dFe profile 1900 10 20 30 40 50 60 0.1 0.2 0.3 0.4 0 0 pFe (nM) Turbidity [m⁻¹ sr⁻¹] x 10³

Radium and Fe in nepheloid layers

²²⁴Raxs (dpm m⁻³) dFe (nM) 1.0 0.5 1.5 0 2 8 6 10 500 Depth (m) 1000 1300 m m Typical 1600 N.Atl dFe profile 1900 0.1 0.2 0.3 0.4 10 20 30 40 50 60 0 0 Turbidity [m⁻¹ sr⁻¹] x 10³ pFe (nM)

Radium and Fe in nepheloid layers

Radium-derived Fe flux estimates

Radium-derived Fe flux estimates

Comparison of sedimentary Fe flux

Severmann et al. 2010; Marsay et al. 2014

Impact on Fe – Transect 2 (Spur)

Impact on Fe – Transect 2 (Spur)

Sediment Fe(II) source

Highest concentrations found:

- Shallow depths on the slope
- Under highly productive waters
- Non-reduction dissolution in oxygenated sediments

Contribute to raised dFe signal in deeper waters

Account for around 10-15% of dFe near slope

Higher percentage in surface waters – photochemical reduction

Iron cycling within the shelf system

