

Southampton

Iron isotopes track the uptake and exchange of iron across an oxic shelf sea

A J M Lough^{1*}, J K Klar², R H James¹, D P Connelly³, W B Homoky⁴, J A Milton¹, P J Statham¹

 ¹ Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK (*correspondence: <u>A.J.M.Lough@soton.sc.uk</u>)
²LEGOS, Universite de Toulouse, 14 Avenue Edourd Belin, 31400 Toulouse, France
³ National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK.
⁴ Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK

Aims

- To differentiate the (i) source inputs of Fe fluxes (ii) and effects of primary productivity on the shelf seasonally
- Track the transport of sediment-derived dFe off the shelf

Fe isotope biogeochemistry

Sampling

Site A – Pre bloom

N. Atlantic δ^{56} dFe range <200 m depth

Site A – Bloom/post bloom

- Pore water δ^{56} dFe ranges from -3 to -0.6 ‰ >85 % is soluble Fe (II)
- Bottom waters 72 % colloidal Fe δ^{56} dFe ranges from -0.5 to -0.2 ‰

Site A – Post Bloom

- Pore water δ^{56} dFe ranges from -3 to -0.6 ‰ >85 % is soluble Fe (II)
- Bottom waters 72 % colloidal δ^{56} dFe ranges from -0.6 to -0.3 ‰

Site A – Summary

• N. Atlantic data (grey) 35° W, 22° N, Conway & John (2014)

Shelf edge

• N. Atlantic data (grey) 35° W, 22° N, Conway & John (2014)

Shelf slope

Southampton

• N. Atlantic data (grey) 35° W, 22° N, Conway & John (2014)

Shelf slope

Southampton

• N. Atlantic data (grey) 35° W, 22° N, Conway & John (2014) shelf slope profile A. Birchill (2016)

Conclusions & Future work

- Bottom water Fe isotope signatures on the shelf are indicative of ligand stabilised pore water flux of Fe post bloom.
- Shift to isotopically lighter Fe throughout water column as bloom progresses and Fe flux increases.
- Shelf edge isotope compositions similar to N. Atlantic waters (so far), lighter isotope composition on shelf slope associated with (re-suspended) colloidal Fe mixed into overlying waters.
- Analysis of more shelf slope and shelf edge samples (incl. nepheloid layers) to complete depth profiles.

Acknowledgements:

- Many thanks to:
- Antony Birchill initial Fe data and plots for DY029 T1
- Malcolm Woodward Nutrient data

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

