



# Seasonal cycling of iron in the Celtic Sea

Antony Birchill, Angela Milne, Simon Ussher, & Paul Worsfold University of Plymouth, Plymouth, UK

Amber Annett, & Walter Geibert University of Edinburgh, Edinburgh, UK

Malcolm Woodward & Carolyn Harris Plymouth Marine Laboratories, Plymouth, UK

Maeve Lohan University of Southampton, Southampton, UK

Dagmara Rusiecka, Eric Achterberg, Martha Gledhill GEOMAR, Kiel, Germany









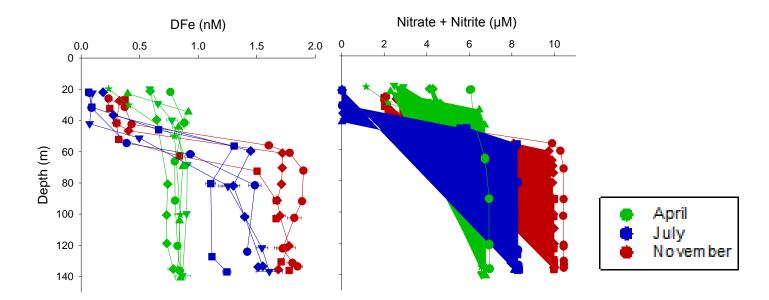


## **Iron Fractions**


| < 0.2 μm<br>dissolved Fe (dFe) |                    | > 0.45 µm<br>particulate Fe (pFe) |                    |  |
|--------------------------------|--------------------|-----------------------------------|--------------------|--|
|                                |                    |                                   |                    |  |
| soluble Fe (sFe)               | colloidal Fe (cFe) | labile pFe<br>(LpFe)              | Total pFe<br>(pFe) |  |
|                                | Unfilt             | ered                              |                    |  |
|                                | dissolvable        | Fe (TdFe)                         |                    |  |

#### Acidified (pH 1.8) for >6 months Analysed by FI-CL

**Analysed by ICP-MS** 


\*Leach: 25% Acetic acid + reducing agent § Digest: HNO<sub>3</sub>/HCI/HF

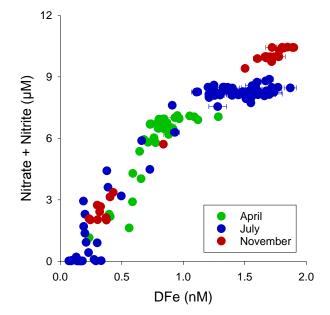
# Seasonal cycling of iron in the Celtic Sea



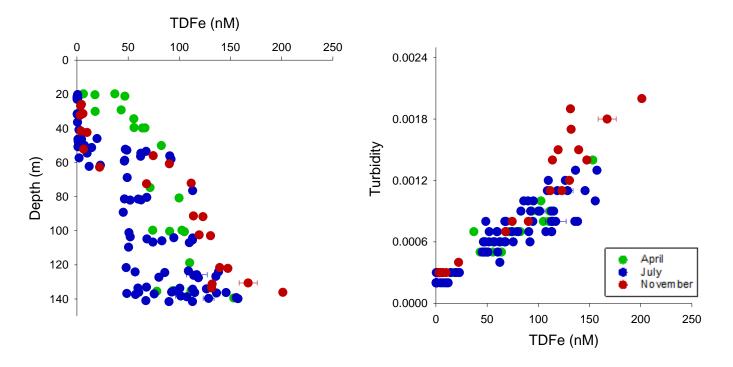
- Fe essential for phytoplankton growth
- In seawater at pH 8.1 sub-nanomolar concentrations are typical for dFe
  - Limits growth in 20-40% of the ocean
- Growing awareness that Fe (co)-limitation more widespread:
  - Shelf systems
    - Californian upwelling, Shelf regions of the Bering Sea, Southern Ross Sea, New England shelf
  - Sub-Arctic North Atlantic
  - At the sub-surface chlorophyll maximum
- Seasonal cycle of iron in temperate shelf systems not presently constrained
  - Is it necessary to consider Fe as potentially growth limiting nutrient in the Celtic Sea?

# Seasonal cycling of dFe in the central Celtic Sea



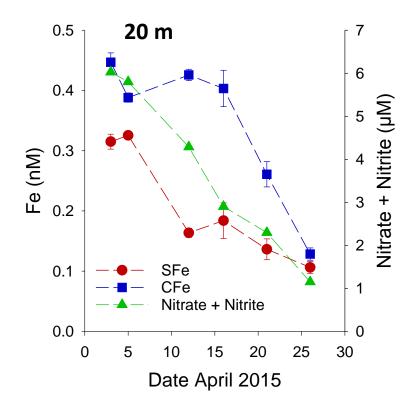

• dFe similar seasonal cycle to that of nitrate

#### **Surface Mixed Layer**


- Depletion during the spring bloom
- Lowest concentrations during summer stratification
- Increase in concentration during autumn as stratification weakens

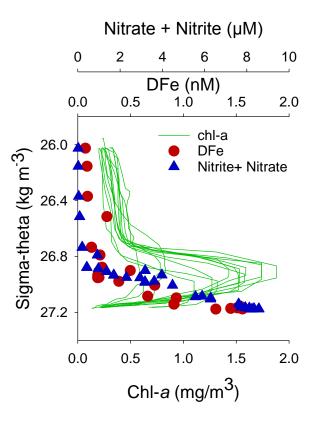
#### **Bottom Mixed Layer**

Seasonal regeneration of dFe in bottom mixed layer



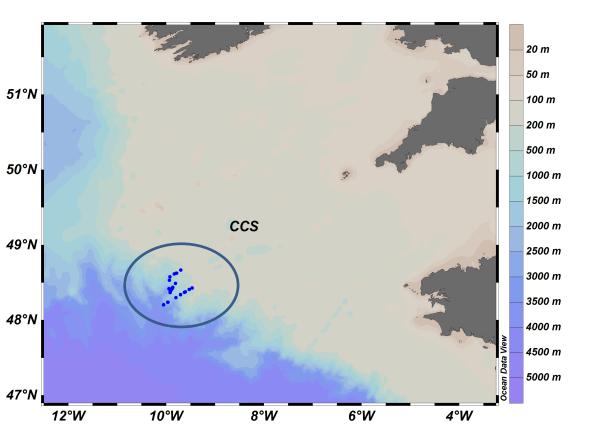

### Cycling of pFe in the central Celtic Sea




- Particulate Fe controlled by short term resuspension events- much bigger pool of Fe
  Driven by processes occurring on shorter timescales than the seasonal cycle e.g. tide
- Depletion in surface mixed layer- stratification restricting vertical mixing
- 15-20 % of particulate Fe in a labile 'exchangeable' form

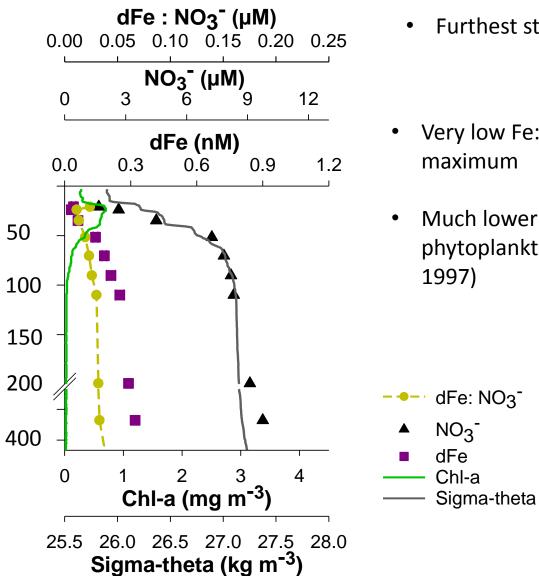
## Spring bloom- preferential drawdown of sFe




- sFe removed before cFe indicating that cFe is more bioavailable
  - Contrasts to observations in the open ocean where a depletion in cFe is observed, we suggest that this is net result of uptake and removal processes

# Summer stratification- depletion of bioavailable Fe in surface waters




- Surface mixed layer deplete in bioavailable iron:
  - dFe typically < 0.2 nM (> 50 % sFe)
  - ➢ LpFe < 0.2 nM</p>
- Sub-surface chlorophyll maximum:
  - Lower light level increases Fe demand to build photosynthetic redox proteins
  - The ratio of Fe:N supplied by the diapycnal flux is lower that uptake in cultured phytoplankton (Ho et al. 2003)

### Shelf break transects- Summer stratification



- Fe cycling in the surface waters overlying the shelf slope during July 2015
  - Most Fe deplete time
- 250 to 2500 m water depth
  - All within 50 km of 200 m isobath

### Shelf break transects- Summer stratification



• Furthest station from shelf break (≈49 km)

- Very low Fe:N (<0.01 nM:µM) in surface chlorophyll maximum</li>
- Much lower than uptake observed in cultured phytoplankton (Ho et al 2003, Sunda and Huntsman 1997)

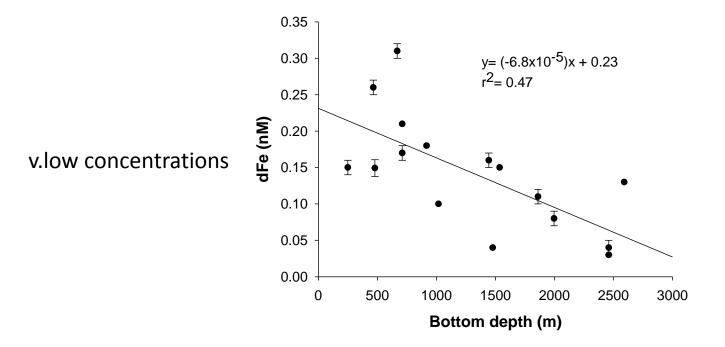
# **Shelf break- Summer stratification**

Surface water values (upper 100 m)

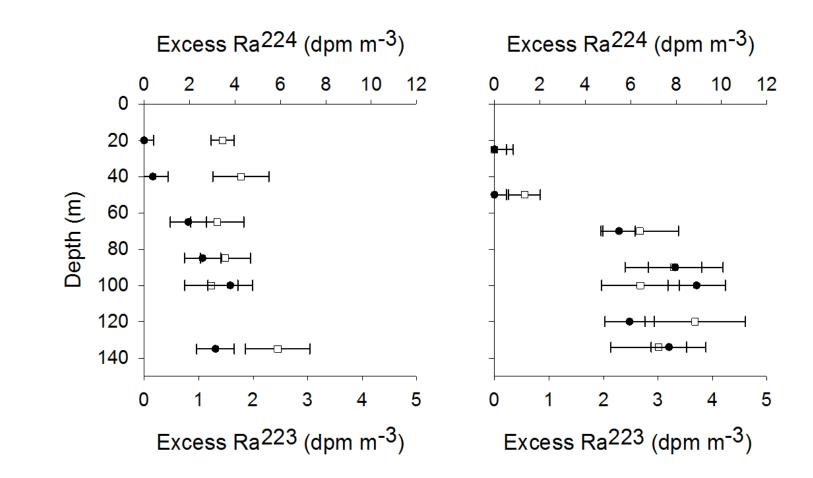
| Distance from    | dFe (nM)  |               |             | Si (uNA) | $DO_{3}^{-}(uM)$                   |
|------------------|-----------|---------------|-------------|----------|------------------------------------|
| shelf break (km) | ure (mvi) | LpFe (nM)     | NO₃⁻ (µM)   | Si (μM)  | PO <sub>4</sub> <sup>3-</sup> (μM) |
| 49               | 0.03-0.14 | $0.10\pm0.01$ | <0.02-7.2   | 0.6-2.2  | 0.2-0.5                            |
| 43               | 0.05-0.16 | $0.13\pm0.00$ | <0.02-4-8.4 | 0.3-2.8  | 0.1-0.5                            |
| 21               | 0.04-0.09 | $0.17\pm0.00$ | <0.02-2-6.6 | 0.3-1.9  | 0.1-0.4                            |

- Nutrients describe oligotrophic environment during summer stratification:
  - Nitrate below LOD
  - $\blacktriangleright$  Silicate < 2µM
  - dFe as low as 30 pM- very low- comparable to HNLC regions
  - ➢ LpFe < 0.2 nM</p>
  - Previous work shows similar depletion of other trace elements during summer (Cotte-Krief et al 2002)
  - Likely that phytoplankton community structure sensitive to availability of multiple nutrients, including Fe

# Conclusions


#### Is it necessary to consider Fe as potentially growth limiting nutrient in the Celtic Sea?

- central Celtic Sea
- 1. Dynamic nutrient type seasonal cycling of dFe in the central Celtic Sea leading to depletion of bioavailable Fe from surface waters during summer stratification
- 2. Preferential utilisation of sFe during the spring bloom
- 3. Seasonal regeneration of dFe in bottom mixed layer


#### • Shelf break

- 1. Vanishingly low dFe concentrations in the surface mixed layer during summer stratification
- 2. Surface nutrient concentrations describe oligotrophic environment where the phytoplankton community structure is likely sensitive to both macro and micro nutrient availability

# Shelf break- horizontal gradient in Fe stress?



- Near surface concentrations, July 2015
- Increased vertical mixing over shelf break previously shown to enhance nitrate flux to surface waters (Sharples et al 2007)
- Near surface dFe concentrations increased over upper shelf slope
- Postulate that the degree of Fe stress increases with distance from shelf slope

