Boundary fluxes to and from the shelf
Vertical and cross-shelf perspectives

Matthew Palmer and Jo Hopkins
On behalf of WP1 team
Vertical and horizontal fluxes in a shelf sea

Ocean-atmosphere exchange
Cross pycnocline fluxes
Shelf-wide circulation and transport
Localised shelf-edge exchanges

NASA/GSFC

Huthnance (2009)

mm to 10s km
Seconds to months
Vertical vs. horizontal
Fine-scale measurements of ocean structure and turbulent mixing from the Ocean Microstructure Glider:

- 37 days of turbulence profiling
- 3163 individual profiles or T, S, ε and O₂ during spring and summer periods
Improving our understanding of air-sea interactions:

- Combined OMG data from FASTNEt and SSB shows the upper ocean mixing to be largely controlled by a balance between wind and buoyancy.

- OMG data confirms that over the region of active mixing, a law-of-the-wall scaling is effective for over 90% of the time.

- ADCPs provide potential for seasonal coverage of turbulent forcing.

Ocean surface boundary layer turbulence is therefore predictable:

length scale: \(L_{Ob} = \frac{U_*}{kB_S} \)

and energy levels: \(\varepsilon_{OSBL} = \frac{U_*^3}{kL_{OB}} \)

\(U_* \) is the friction velocity, \(k \) is von Kármán's constant, \(B_S \) is the buoyancy scaling, \(L_{OB} \) is the boundary layer length scale, \(\varepsilon_{OSBL} \) is the turbulent energy level in the surface boundary layer, and \(k \) is von Kármán's constant.
The role of precipitation in initiation of seasonal stratification?

There is a noticeable switch between dominant **salinity** and **temperature** controls on stratification but the initial sustained stratification period is mostly controlled by **salinity**.
Calculating vertical internal fluxes to understand biogeochemical cycles

Turbulent mixing estimates from the OMG enable calculation of fluxes across the stratified interior to constrain physical and biogeochemical budgets.

Top-to-bottom observations of turbulence also enable direct forcing of a bio-physical model to investigate triggers for the spring bloom.

Hopkins et al, in prep for GRL (see poster)
N₂O - Temporal & Spatial Variability

- **April-May**
 - Off-shelf: 0.0
 - On-shelf: -0.5

- **Jul-Aug**
 - Off-shelf: +0.6
 - On-shelf: +1.2

- **Nov-Dec**
 - Off-shelf: -4.5
 - On-shelf: +0.3

Fluxes (µmol m⁻² d⁻¹)
- Off-shelf: 0.0
- On-shelf: -0.5
- Off-shelf: +0.6
- On-shelf: +1.2
- Off-shelf: -4.5
- On-shelf: +0.3

Andy Rees
A simple model for predicting the active mixing layer depth?

Ocean surface boundary layer turbulence

length scale: $L_{Ob} = \frac{U_\ast}{k_{BS}}$

and energy levels: $\varepsilon_{OSBL} = \frac{U_\ast^3}{k_{OB}}$

Bottom boundary layer turbulence

$\varepsilon_{BBL} = \frac{U^3}{BBL}$

Spring 2015

Summer 2015
Summary

• We have developed new insights into atmospheric controls of winter and spring stratification and associated biogeochemical responses.

• Turbulent controls on the inner-shelf are shown to be largely 1-dimensional, controlled at the bed by tidal mixing and wind-buoyancy forcing at the surface, with only a small impact attributable to surface waves.

• Upper ocean turbulence in seasonally stratifying shelf seas is shown to be largely predictable from atmospheric inputs alone, enabling accurate estimates to be made of the active mixing layer depth (see poster by Matthew Palmer).

• Internal mixing is weak, but does play a critical role on diapycnal heat and nutrient fluxes, providing a critical control on N₂O supply to the atmosphere (see Andy Rees) and bottom layer oxygen concentration (see poster by Charlotte Williams).

• While vertical processes dominate on the shelf, horizontal process are seen to play an important role in turbulent control of physical and biogeochemical structure.
Seasonality in cross-shelf hydrography and the implications for nutrient supply

E. Ruiz, J. Sharples, J. Hopkins

The problem

• Ocean typically viewed as the primary source of nutrients to the shelf
• Mechanisms that weaken geostrophic control at the shelf break and enable local exchange are ‘easy’ to list, but……
• The processes that subsequently transport nutrients to the interior of a wide shelf are less well defined

The question

How do nutrients supplied at the coastal and ocean boundaries penetrate onto the shelf to support primary production?
Data sets used

River flow data from Natural Resources Wales & the National River Flow Archive

Nitrate input provided by S. van Leeuwen (Cefas). Raw data from Environment Agency, Scottish Environment Protection Agency, Rivers Agency (NI), National River Flow Archive

17 month mooring deployments in central Celtic Sea and at Celtic Deep

CD & CCS time series from T. Hull & J. Wihsgott

River discharge and nitrate load from Bristol Channel

9 cross-shelf CTD + nitrate transects

Nitrate samples from M. Woodward
Conventional thermal perspective

Temperature at CCS

J. Wihsgott
(1) Low salinity surface plume
(2) On-shelf intrusion of saline bottom water
1-4 cm s\(^{-1}\) buoyancy driven offshore flow at the surface

Relaxation of horizontal density gradients triggered by thermal stratification
(1) Low salinity plume in the northern Celtic Sea

Bristol Channel fresh water discharge and nitrate input

- Winter fresh water nitrate concentration of 500 mmol m$^{-3}$
- 4 months for peak fresh water discharge to reach CD
- 30% nitrogen removal in 4 months
- Fresh water fraction of 0.8% at the Celtic Deep

40% of the nitrate observed in spring at the Celtic Deep is from the river (10% at CCS)
(2) On-shelf bottom water flows

100-120 km isohaline displacement

Implies $O(1 \text{ cm s}^{-1})$ flows (0.8 km day$^{-1}$)

1-1.5 m2s$^{-1}$ transport
Bottom water salinity increase at CCS

0.2 g kg\(^{-1}\) in 4 months

Figure from J. Wihsgott
(2) On-shelf bottom water flows

How to maintain a persistent 1-1.5 m²s⁻¹ transport across 100 km of shelf?

Horizontal dispersion?

- Too slow
- 100 km in > 1 year

Compensation for surface Ekman transport?

- Wrong direction, off-shelf

Non-linear internal waves?

- ~0.6 m²s⁻¹
- Patchy, upper limit

Internal tide stokes drift?

- ~1 m²s⁻¹
- Upper limit
(2) On-shelf bottom water flows

How to maintain a persistent 1-1.5 m2s$^{-1}$ transport across 100 km of shelf?

Pressure gradient flow?

Cross-shelf density gradient set up by salinity and modified by seasonal temperature structure

Spring-Summer positive (on-shelf) pressure gradient over central shelf

On-shelf bottom boundary layer transport of 1.6 m2 s$^{-1}$

Persistence, length and timescales fit with the observed isohaline displacements and salinity changes
(2) On-shelf bottom water flows

- Assume conservative nitrate-salinity relationship in March
- Predict transport of nitrate on-shelf in bottom waters based on isohaline displacement
- Differences between this prediction and observed values attributed to remineralisation

Nutrient supply to the inner shelf?
(2) On-shelf bottom water flows

Bottom water salinity at CCS

![Graph showing bottom water salinity at CCS](image)

Nitrate concentration

- **Observed N (N₀)**
- **Implied N from S-N relationship & isohaline movement (Nₛ)**

![Graph showing nitrate concentration](image)

% of N₀ due to transport

![Graph showing percentage of N₀ due to transport](image)

- 25% of N increase at CCS (Apr-Nov) attributable to on-shelf transport
- 75% from remineralisation
Summary

Salinity gradients matter

Riverine supply of nutrients to inner shelf minimal (10% at CCS)
Northern Celtic Sea benefits more (40% Celtic Deep)

Density driven shelf-wide circulation supplies nutrients to the inner shelf

Nutrients available to each years spring bloom in the central shelf are a combination of ocean-supplied (25%) and recycled material (75%) from the previous year

Also…evidence of density gradients to drive off-shelf transport (important for carbon export)…but that’s another talk……
See Ruiz et al, in prep for Prog. Oceanog.
Off-shelf transport over winter

November 2014

March 2015

March pressure gradient towards shelf edge, set up by winter cooling over the shallow shelf, drives off-shelf transport
Off-shelf flow at the shelf edge

Year round pressure gradient at the shelf-edge conducive to off-shelf flow

Ekman drainage would then help draw water into the deeper ocean

Potential to export carbon from phytoplankton growing at the shelf edge, especially in the summer