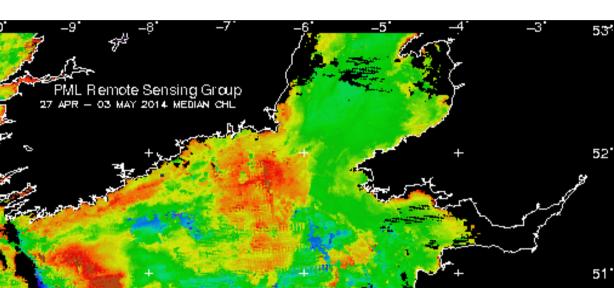



Seasonal biogeochemical cycling of permeable sediments in a shelf sea environment

Southampton

Sarah Reynolds^a*, Jessy Klar^b, Vassilis Kitidis^c, Will B. Homoky^d, Lesley Chapman-Greig^a, Anouska Panton^a, Charlie Thompson^b, Peter J. Statham^b & Gary R. Fones^a

INIVERSITY OF OXFORI ^a School of Earth and Environmental Sciences, University of Portsmouth, UK, ^b Ocean and Earth Science, University of Southampton, UK, ^cPlymouth Marine Laboratory, UK, ^dUniversity of Oxford, UK *Contact email: sarah.reynolds@port.ac.uk

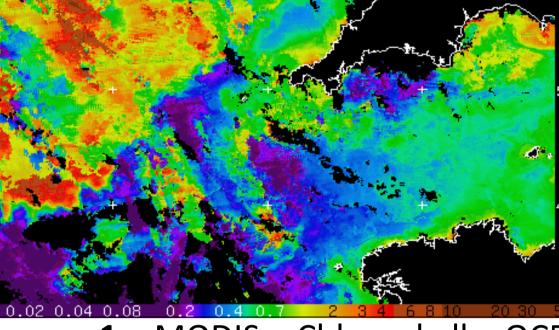


www.uk-ssb.org

ŻŻ Department for Environment Food & Rural Affairs

Rationale

Shelf seas are globally important in contributing to the biogeochemical cycling of carbon and nutrients. Much of the benthic environment found in shelf seas comprise of relic permeable sands 🚺

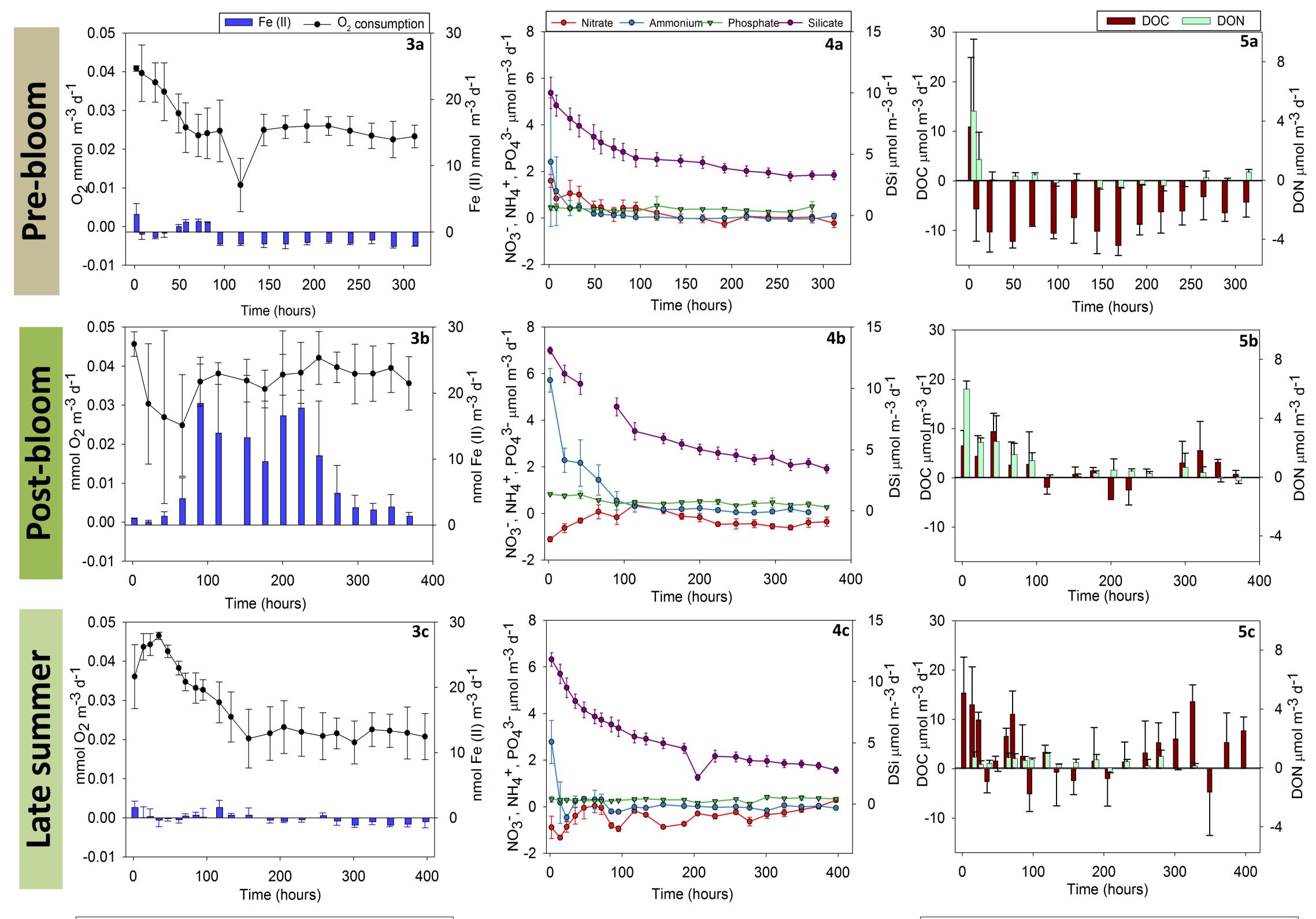


Approach

Flow-through reactors (Rao et al, 2007) were employed to investigate the biogeochemical cycling of permeable sediments.

- Surface sediment (<5 cm) was collected from a permeable site.
- Experimental conditions were set with flow rates of 1 ml min⁻¹ and at bottom temperature (8°C – 11°C).

pore-water flow advective whereby processes govern the biogeochemical cycling within these sediments. То further our understanding of these processes we embarked on a field campaign as part of the UK led Shelf Sea Programme; Biogeochemistry three cruises took place in the southern Celtic


Chlorophyll OC5 Figure MODIS weekly composite (27th April - 3rd May 2014). NERC Earth Observation Data Acquisition and Analysis Service

Sea in 2015 and were timed to sample pre-bloom (March [DY021), postbloom (May [DY030] and late summer (August [DY034]) conditions.

Inflow and outflow samples were collected (12-24 hours) for O_2 (Unisense sensors), iron (II), inorganic nutrients (M. Woodward, PML), and DOC/DON.

Results

Similar **O**₂ consumption for prebloom and late summer; initially ~ 0.04 mmol O₂ m⁻³ d⁻¹ decreasing to 0.023 and 0.022 mmol $O_2 \text{ m}^{-3} \text{ d}^{-1}$ respectively. Post-bloom were almost double at 0.038 mmol $O_2 \text{ m}^{-3} \text{ d}^{-1}$ Drawdown of *Fe (II)* pre-bloom, with significant releases of up to 18 nmol Fe (II) m⁻³ d⁻¹ post-bloom. Late summer Fe (II) appears balanced. Significant and comparable rates of **DSi** release over all seasons. Consistent flux of **PO₄³⁻** (~0.4 µmol m⁻³ d⁻¹) over all seasons.

Pre-bloom initial release of NO₃⁻ decreasing to a more balanced system. Post-bloom and late summer net drawdown of **NO**₃⁻ observed.

Initial fluxes of NH_4^+ of ~3 μ mol m⁻³ d⁻¹ pre-bloom and late summer with upto ~6 μ mol m⁻³ d⁻¹ post bloom. System becomes balanced across all seasons.

Significant drawdown of **DOC** (up to

13 µmol m⁻³ d⁻¹) pre-bloom. Release

Highly variable net fluxes during late

summer (-4.77 – 5.11 μ mol m⁻³ d⁻¹).

Substantial initial releases of **DON**

of ~10 μ mol m⁻³ d⁻¹ in post-bloom.

Figure 3 FTR fluxes of oxygen consumption and Fe (II) release (a) prebloom (b) post bloom (c) late summer

Initial conclusions...

Figure 4 FTR fluxes of inorganic nutrients (a) pre-bloom (b) post-bloom (c) late summer

Figure 5 FTR fluxes of DOC and DON (a) pre-bloom (b) post-bloom (c) late summer

• Fe (II) release during post-bloom as a result of oxic breakdown of organic matter.

 Appears DOC fuelling respiration pre-bloom • Permeable sediments can act as a substantial and across all seasons, highest postconsistent source of DSi and PO_4 to the pelagic system. • Seasonality observed in O₂ consumption bloom (18 μ mol m⁻³ d⁻¹), decreasing can be attributed to an assumed increase in Permeable sediments are dynamic systems which play a with some net removal during preorganic C loading to sediment substantial role in carbon and nutrient biogeochemistry bloom.

Reference: Rao, A. M. F., M. J. McCarthy, W. S. Gardner and R. A. Jahnke (2007). Continental Shelf Research, 27, 1801 – 1819. Acknowledgements: This work is funded by NERC NE/K001809/1. The authors wish to thank the Master, officers and crew of the RRS Discovery. Further thanks goes to the personnel of NMF-SS.