Shelf Sea Biogeochemistry blog

Showing posts with label phytoplankton. Show all posts
Showing posts with label phytoplankton. Show all posts

Wednesday, 15 April 2015

Spring has sprung - here comes the bloom

Alex Poulton, National Oceanography Centre

After two weeks in the Celtic Sea we are seeing clear signs that the spring bloom has truly begun - nutrients are declining whilst levels of the pigment chlorophyll, used by phytoplankton for photosynthesis, are steadily rising. 

Just how green the water is at present (slightly cheating as this is a pigment extract rather than seawater). Photo: Chata Seguro.

The bloom appears to be patchy across the Celtic Sea; from the shelf edge where the bloom has not started to show strongly yet, to the central Celtic Sea (where our Candyfloss site is) where small phytoplankton are actively growing, to the northern Celtic Sea where we saw huge diatoms (images below) - a type of phytoplankton which often characterises blooms and productive waters - which were at least a hundred times larger than anything we have seen so far. 

Diatoms and zooplankton seen under the microscope. Photo: Chata Seguro.

A close up of one of the large diatoms we saw in the NE Celtic Sea. Photo: Chata Seguro. 

As the nutrient levels continue to decline we are keen to see what happens within the phytoplankton community: will there be a clear progression from large cells to smaller cells which needs less nutrients for growth, will the diatoms be succeeded by another phytoplankton group? How these changes are reflected in the rest of the ecosystem is a key question we will address over the next two weeks. For example, how will changes in which type of phytoplankton is present influence the different nutrients needed for their growth (nitrogen, phosphorus, silica), and will we see changes in the dominant types of zooplankton (tiny animals that eat the phytoplankton) across the Celtic Sea.

The ever present fog viewed from the bow of the RRS Discovery. Photo: Chata Seguro.

Though the bloom has arrived, we have lost the sun - a dense sea fog has descended on us over the last few days which means we can only see a hundred to two hundred metres in any direction (see image). The eerie silence that this has brought to the ship is broken up at regular intervals by the ear shattering sound of the ships horn announcing our presence. If the spring bloom didn’t know we were here before, you can be sure that it does now.

Monday, 13 April 2015

The breath of the ocean

My name is Jose Lozano and I am a PhD student from the University of Vigo, Spain. In this cruise (DY029), I work with  Elena Garcia, post-doc at the University of East Anglia, taking samples and doing  measurements of oxygen (O2) respiration in the Celtic Sea (Candyfloss) by using different methods, Optodes (optical sensor devices, which is designed to measure absolute oxygen concentration and % saturation), Electron Transport System and Winkler (a test used to determine the concentration of dissolved oxygen in water samples).

Net community production (NCP) is a measure of the net amount of carbon removed from the atmosphere, which represents the difference between Gross Primary Production (carried out by phytoplankton through the photosynthesis) and Dark Community Respiration (from both phyto and zooplankton). Plankton found in the world’s oceans are crucial to much of life on Earth. They are the foundation of the bountiful marine food web, produce half the world’s oxygen and suck up harmful carbon dioxide.  It is therefore vital for scientists to closely observe the oceanographic and biological variables related with these little buoyant organisms, temperature, nutrient content, light extinction or partial pressure existing in the water column.

During the cruise we have very busy schedules, not only the scientists but also the crew and  the technicians. They all work constantly, making the practice of science much easier, by cleaning, cooking, creating tools, or fixing devices. We, the scientists, couldn't make it without their support.

Dolphins, Photo: Jose Lozano

When you spend 24 hours a day in an oceanographic vessel, even in hours of rest, you feel very tempted to go on deck to chill out and breathe the fresh air at the stern. In a good day you can feel the ocean breathing gently and musically through the waves, the cool wind blowing on your face, you can observe the wildlife, the terns and the gannets flying over your head and families of common dolphins jumping playful just few meters away from the vessel. You can even see some land animals, such as owls, garden birds or little spiders, which are travelling with us on the ship. All these organisms, from the smallest diatom to the biggest marine mammal, breathe oxygen (though in the case of archaea or bacteria, other molecules may be used) in order to obtain energy from organic matter, so to be able to keep going.

Sandwich tern. Photo: Jose Lozano

Thursday, 2 April 2015

Exploring the shelf seas – hunting the spring bloom

Alex Poulton, National Oceanography Centre

After almost a week since arriving and saying farewell to the benthic (sea floor) scientists from DY021, the RRS Discovery sailed out of Southampton just after lunchtime on the 1st April on the second of this year’s Shelf Sea Biogeochemistry cruises. This cruise has a slightly different flavour to the last one – our focus is on the organisms living in the upper water column (pelagic), not in or around the bottom sediments. We hope to sample the plankton, tiny marine organisms that live in the water column, during one of the key periods in the seasonal diary of life in the ocean: the spring bloom. During spring, as temperatures get warmer and days get longer, phytoplankton, the tiny plants that form the base of the marine food chain have a growth spurt. This rapid increase in biomass provides a ready meal for the myriad of grazers present, and in this way the spring bloom fuels the food chain up to fish and beyond. To fuel this rapid growth, nutrients are required and the spring bloom rapidly diminishes the nutrient levels that have been present through the cold and dark winter. 

Picture 1 : 
The position of the Candyfloss site is shown on top of a satellite image (courtesy of NEODAAS) of chlorophyll (a pigment used for photosynthesis by marine plants, or phytoplankton) from late March. Colour changes from deep purple to green and yellow are indicative of increasing biomass of phytoplankton. Eventually patches of red will appear indicating that the spring bloom is well underway. 

Across the four weeks of this cruise we will travel to various sites within the Celtic Sea in order to build up a time-series of observations of the spring bloom as it happens, in terms of how it changes the water chemistry, how its biological components (bacteria, plants and animals) interact with one another, and how the physical environment of a shelf sea influences its formation and structure. To do all this work takes a huge team of scientists and technicians, and a top of the range research ship manned by skilled and experienced crew. Onboard we have 30 scientists and technicians, from nine different research institutes and universities across the UK. 

Picture 2 : 
One of the key sampling instruments for the cruise – a CTD (Conductivity-Temperature-Depth) probe with large grey bottles attached for collecting sea water returning to the surface with the first of our samples. (Picture by Jose Lozano).

ince sailing from Southampton on the 1st April we have been making our way out to one of our key sites for the next few weeks: ‘CANDYFLOSS’ or the ‘Central Celtic Sea’ (Picture 1). This evening we briefly stopped to test some of the sampling equipment we use to collect water – a CTD (oceanographic instrument used to determine the conductivity, temperature, and depth of the ocean, see Picture 2 below). Our ETA is around lunchtime tomorrow, after a short stop at first light to pick up one of the gliders that has been monitoring conditions out here for the last few weeks. When we arrive at CANDYFLOSS, work will begin in earnest as we recover the moored instruments which we left here last November, put new batteries in them, download the data they have recorded, and plonk them back in again. As always on a ship, tomorrow is going to be a long day.

Tuesday, 10 March 2015

Springtime phytoplankton blooms in the Celtic Sea

Louis Byrne, British Oceanographic Data Centre, NOC

The seasonal changes in the Celtic Sea primarily revolve around the development of water column stratification in spring and when it breaks down in late summer to early autumn.  Right now in March, the Celtic Sea is fully mixed, however with the days getting longer and warmer (we hope), the surface of the Celtic Sea is also warming. As the surface warms its density decreases and the water becomes lighter compared to the colder waters below which don’t have access to the suns heat. (Fig 1.) To help watch for these changes we have a daily set of sea surface chlorophyll and temperature satellite images sent from the NEODAAS team at PML to the ship, and any developments of blooms and changes to the temperature can be seen as they occur.

Fig. 1: Temperature profiles in the mid latitudes in the ocean. Dashed (- - - -) line is for the winter and the continuous line for the summer season

This will eventually result in the creation of two distinct bodies of water, with a warm surface layer resting above a colder layer below, much like a cocktail which often have two or three coloured layers sitting on top of one another.

As well as causing the onset in stratification, the increase in temperature and sunlight also causes a truly massive increase in the number of phytoplankton in an event known as a plankton bloom [many plankton blooms are so large they can be seen from space! (see Fig.2)]. This results in a feeding frenzy as zooplankton (Fig. 3) numbers surge and they are in turn eaten by other organisms, passing the energy down the food web.

Fig. 2: Plankton Bloom in the Celtic Sea. Captured by the Envisat's Medium Resolution Imaging Spectrometer (MERIS) on 23 May 2010. Credits ESA

The phytoplankton bloom starts just before the onset of stratification, and then continues in the surface layer as the water there is warmer and receives much more sunlight. Eventually the phytoplankton will use all of the nutrients available in the surface layer and most of the plankton will die off. When this happens their cells will fall through the water column, causing a large increase in the biological material available on the seabed.

"Copepodkils". Licensed under CC BY-SA 3.0 via Wikimedia Commons -
When stratification breaks down at the end of summer, the water column in the Celtic Sea is again fully mixed. The bottom layer of water is still nutrient rich and these nutrients are also mixed into the surface of the water column, and become available for photosynthesis. This causes a smaller phytoplankton bloom at the end of summer before the days darken, and the cycle is complete.

Monday, 2 March 2015

Shelf Seas Biogeochemistry – A short introduction

By Louis Byrne, British Oceanographic Data Centre, NOC

We woke up on Monday to a sea which was perhaps even worse than Sunday. We were still a fair distance away from site A and were not scheduled to reach site A till approximately 2100 Monday evening. Due to the rough seas I spent the majority of the day hugging my toilet bowl, but not before making the rookie mistake of blocking my sink with the remains of my breakfast, which Geoff the Steward was not too happy about.  Due to a day spent in transit not much happened, and due to my sea-sickness I was not around to see what did, therefore I thought it would be a good time to introduce the reason why we’re rushing towards the Celtic Sea at a slow and steady speed of seven knots.

Although shelf seas make up only 5% of the ocean surface, they have been estimated to be the most valuable biome on earth, with high levels of primary productivity supporting diverse ecosystems. High concentrations of nutrients support the growth of phytoplankton, which are single celled marine organisms that photosynthesise like plants on land. Like plants on land, Phytoplankton are the base of the marine food web and they provide a diverse food source for many marine creatures, such as zooplankton.

Phytoplankton are the foundation of the oceanic food chain.

Zooplankton are tiny marine animals which are food for fish and countless other marine organisms, that are then in turn eaten by others. It is in this way that the sun’s energy fixed by phytoplankton on the surface of the water column is distributed throughout the marine ecosystem, underpinning more than 90% of global fisheries and offering many other important ecosystem services.

In addition to supporting the entire marine food web, the photosynthesis carried out by phytoplankton also removes significant amounts of carbon dioxide from our atmosphere.  Although tiny, phytoplankton have a disproportionately massive effect on our atmosphere, and are responsible for creating as much as half of the oxygen that we breathe, removing an equally large amount of carbon dioxide as they do it. Some of the carbon extracted by the phytoplankton will sink to the sea floor and be stored in the sediments (often for thousands of years!), reducing the overall concentration of carbon dioxide in our atmosphere.

In order for the shelf seas to sustain these high levels of production, the phytoplankton must be supplied with nutrients, but where do these nutrients come from? It is the need for us to better understand the role of shelf seas in the global nutrient cycle, how this supply of nutrients determines the shelf’s primary and secondary production and how this affects other processes such as carbon storage which has led to the Shelf Seas Biogeochemistry programme.

At 2100 on Monday night we reached site A and decided that the seas were too rough to sample that night. Therefore, an 0600 hours CTD cast was scheduled for the following morning, and we were hopeful that our cruise was about to get its first piece of data.

For those of you wishing to see the answer to yesterday’s question, the answer is Richard Cooke of the National Oceanography Centre, Liverpool.